Nissan Yokohama Lab: Η τεχνητή νοημοσύνη συναντά τα αυτοκίνητα

Το Yokohama Lab βρίσκεται στην πρώτη γραμμή της έρευνας και ανάπτυξης της τεχνητής νοημοσύνης της Nissan, εκεί όπου συναντώνται η τεχνητή νοημοσύνη και τα αυτοκίνητα.

  • -
  • -

Από την ίδρυσή της, πριν από 90 χρόνια, η Nissan πρωτοστατεί στην τεχνολογία των αυτοκινήτων και από αυτή την προσπάθεια δεν γίνεται να λείπει και η τεχνητή νοημοσύνη. Καθώς οι ανάγκες των αγοραστών αυτοκινήτων και της κοινωνίας συνεχίζουν να αλλάζουν γρήγορα, το Yokohama Lab βρίσκεται στην πρώτη γραμμή της έρευνας και ανάπτυξης της τεχνητής νοημοσύνης της Nissan, εκεί όπου συναντώνται η τεχνητή νοημοσύνη και τα αυτοκίνητα.

Τι είναι το Yokohama Lab;

Το Yokohama Lab είναι ένα ερευνητικό κέντρο στην περιφέρεια Kanagawa της Ιαπωνίας που μελετά τον τρόπο χρήσης της τεχνητής νοημοσύνης στην αυτοκινητοβιομηχανία. Η σύγχρονη τεχνητή νοημοσύνη (AI), βασισμένη σε μεγάλα δεδομένα, υπερέχει στην ανάλυση και έκφραση πληροφοριών στον κυβερνοχώρο. Ωστόσο, τα αυτοκίνητα της Nissan έχουν φυσική υπόσταση. Η αποστολή του Yokohama Lab είναι να διασφαλίσει ότι τα αποτελέσματα που λαμβάνονται μέσω της τεχνητής νοημοσύνης μπορούν να εφαρμοστούν και να χρησιμοποιηθούν στην πραγματικότητα, αντί να περιορίζονται στον κυβερνοχώρο.

Μπορεί η AI να λύσει το πρόβλημα;

Έτσι ξεκίνησε ένα συλλογικό έργο για την ανάπτυξη ενός μοντέλου πρόβλεψης, με χρήση τεχνητής νοημοσύνης βαθιάς εκμάθησης,  που θα μπορούσε να εκτιμήσει γρήγορα τον συντελεστή οπισθέλκουσας γύρω από ένα αυτοκίνητο. Όμως σύντομα αντιμετώπισαν ένα πρόβλημα. Η εκπαίδευση ενός μοντέλου AI με αυτόν τον τρόπο απαιτεί τεράστιο όγκο δεδομένων, που συχνά απαιτεί δεκάδες εκατομμύρια υπολογιστές. Δυστυχώς, τα περισσότερα από τα παλιά δεδομένα προσομοίωσης είχαν διαγραφεί και ο διαθέσιμος όγκος πληροφοριών δεν ήταν κατάλληλος για μηχανική εκμάθηση.

ky

Ο data scientist Chen Fangge, εξηγεί πώς αντιμετώπισαν το ζήτημα. "Υπολογίσαμε ξανά τα πάντα από την αρχή. Ταυτόχρονα, θέσαμε κανόνες για την αποθήκευση δεδομένων ειδικά για μηχανική εκμάθηση κατά τη διάρκεια προσομοιώσεων και καθορίσαμε τις απαιτήσεις για αποθήκευση δεδομένων. Μας πήρε πάνω από ένα χρόνο για να συγκεντρώσουμε αρκετά δεδομένα για να χρησιμοποιηθούν από το AI μοντέλο." Δυστυχώς, ο όγκος των δεδομένων που συλλέχθηκαν αποδείχθηκε ανεπαρκής για την επίτευξη της επιθυμητής ακρίβειας. Χρειάζονταν μια διαφορετική προσέγγιση.

Μείωση του χρόνου πρόβλεψης σε δευτερόλεπτα

Σε αυτή την έρευνα, η τεχνητή νοημοσύνη μπόρεσε να μειώσει δραματικά τη διάρκεια των προσομοιώσεων μαθαίνοντας τη σχέση μεταξύ του σχήματος του αυτοκινήτου και της αεροδυναμικής του απόδοσης,  με βάση ένα μεγάλο όγκο δεδομένων. Η πρόβλεψη της αεροδυναμικής απόδοσης ενός νέου σχεδιασμού αυτοκινήτου θα μπορούσε πλέον να γίνει σε λίγα δευτερόλεπτα, αντί για αρκετές ημέρες.

Δείτε επίσης: Τεχνολογία Nissan e-4ORCE

Χρησιμοποιώντας αυτήν την τεχνολογία, οι σχεδιαστές και οι μηχανικοί μπορούν να εξερευνήσουν νέα σχέδια σε συντομότερους κύκλους. Αυτό αναμένεται να οδηγήσει στη δημιουργία καινοτόμων σχημάτων αμαξώματος οχημάτων, που επιτυγχάνουν καλύτερο επίπεδο ισορροπίας μεταξύ σχεδίασης και αεροδυναμικής.

AYTO TO ΔΙΑΒΑΣΕΣ

ΠΑΡΑΚΑΛΩ ΠΕΡΙΜΕΝΕΤΕ. ΦΟΡΤΩΝΟΝΤΑΙ ΠΕΡΙΣΣΟΤΕΡΑ...